CHAPTER 13

Analysis of Clocked Sequential Circuit

Contents

13.1 A Sequential Parity Checker

13.2 Analysis by Signal Tracing
13.3 State Table and Graphs
13.4 General Models for Sequential Circuits

Objectives

Topics introduced in this chapter:
13.1 Analyze a sequential circuit by signal tracing.
13.2 Given a sequential circuit, write the next-state equations for the flip-flops and derive the state graph or state table. Using the state graph, determine the state sequence and output sequence for a given input sequence .
13.3 Explain the difference between a Mealy machine and a Moore machine.
13.4 Given a state table, construct the corresponding state graph, and conversely.
13.5 Given a sequential circuit or a state table and an input sequence, draw a timing chart for the circuit. Determine the output sequence from the timing chart, neglecting any false outputs.
13.6 Draw a general model for a clocked Mealy or Moore sequential circuit. Explain the operation of the circuit in terms of these models.
Explain why a clock is needed to ensure proper operation of the circuit.

13.1 A Sequential Parity Checker

8-bit words with odd parity

13.1 A Sequential Parity Checker

Fig 13-1. Block Diagram for Parity Checker

Clock

13.1 A Sequential Parity Checker

Figure 13-2: Waveforms for Parity Checker

13.1 A Sequential Parity Checker

Figure 13-3: State Graph for Parity Checker (Moore Machine)

13.1 A Sequential Parity Checker

Table 13-1. State Table for Parity Checker

| Present
 State | Next state
 0 | | $X=1$ |
| :--- | :---: | :---: | :---: | | Present |
| :--- |
| Output |

(a)

Figure 13-4: Parity Checker

Q	Q^{+}		T		Z
	$X=0$	$X=1$	$X=0$	$X=1$	Z
0	0	1	0	1	0
1	1	0	0	1	1

(b)

13.2 Analysis by Signal Tracing

Output tracing

1. Assume an initial state of F / F
2. For the first input in the give sequence, determine the output and F / F inputs
3. Determine the new sets of \mathbf{F} / \mathbf{F} states after the next active clock edge
4. Determine the output that corresponds to the new states
5. Repeat $\mathbf{2 , 3 , 4}$ for each input in the given sequence

Figure 13-5: Moore Sequential Circuit to be Analyzed

13.2 Analysis by Signal Tracing

Figure 13-6: Timing Chart for Figure 13-5

$$
\begin{aligned}
& \mathrm{X}=\begin{array}{lllllll}
0 & 1 & 1 & 0 & 1 \\
\mathrm{~A}= & 0 & 1 & 0 & 1 & 0 & 1 \\
\mathrm{~B}=\left(\begin{array}{lllllll}
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right. \\
\mathrm{Z}=(0) & 1 & 1 & 0 & 1 & 0
\end{array}
\end{aligned}
$$

13.2 Analysis by Signal Tracing

Figure 13-7: Mealy Sequential Circuit to be Analyzed

$X=1$	0	1	0	1	
$A=0$	0	0	1	1	0
$B=0$	1	1	1	1	0
$Z=1(0)$	1	$0(1) 0$	1		

(False outputs are indicated in parentheses)
Figure 13-8: Timing Chart for Circuit of Figure 13-7

X	1	0	1	0	1
Clock		\square			\square
A	i				
B					
Z	1	1	0	0	1

13.3 State Table and Graphs

1. Determine the flip-flop input equations and the output equations from the circuit
2. Derive the next-state equation for each flip-flop from its input equations, using one of the following relations:

$$
\begin{array}{lll}
\text { D flip-flop } & Q^{+}=D & (13-1) \\
\text { D-CE flip-flop } & Q^{+}=D \cdot C E+\text { Q }^{\prime} & (13-2) \\
\text { T-flip-flop } & Q^{+}=T \oplus Q & (13-3) \\
\text { S-R flip-flop } & Q^{+}=S+R^{\prime} Q & (13-4) \\
\text { J-K flip-flop } & Q^{+}=J Q^{+}+K^{\prime} Q & (13-5) \tag{13-5}
\end{array}
$$

3. Plot a next-state map for the flip-flop.
4. Combine these maps to form the state table. Such a state table, which gives the next state of the flip-flops as a function of their present state and the circuit inputs, is frequently referred to as a transition table.

13.3 State Table and Graphs

1. The flip-flop input equations and output equation are

$$
D_{A}=X \oplus B^{\prime} \quad D_{B}=X+A \quad Z=A \oplus B
$$

2. The next-state equations for the flip-flops are

$$
A^{\prime}=X \oplus B^{\prime} \quad B^{+}=X+A
$$

3. The corresponding maps are

4. Combining these maps yields the transition table in Table 13-2(a), which gives the next state of both flip-flops ($A+, B+$) as a function of the present state and input. The output function Z is then added to the table. In this example, the output depends only on the present state of the flip-flops and not on the input, so only a single output column is required

13.3 State Table and Graphs

Table 13-2: Moore State Tables for Figure 13-5

$A B$	$X=0$	$X=1$	Z	
00	10	01	0	
01	00	11	1	
11	01	11	0	
10	11	01	1	

| Present
 State | Next state
 0 | | $X=1$ |
| :---: | :---: | :---: | :--- |$|$| Present |
| :--- |
| Output(z) |

13.3 State Table and Graphs

Figure 13-9: Moore State Graph for Figure 13-5

13.3 State Table and Graphs

The state table and graph for the Mealy machine of Figure $13-7$.
The next-state and output equations are

$$
\begin{aligned}
& A^{+}=J_{A} A^{\prime}+K_{A}^{\prime} A=X B A^{\prime}+X^{\prime} A \\
& B^{+}=J_{B} B^{\prime}+K_{B}^{\prime} B=X B^{\prime}+(A X)^{\prime} B=X B^{\prime}+X^{\prime} B+A^{\prime} B \\
& Z=X^{\prime} A^{\prime} B+X B^{\prime}+X A
\end{aligned}
$$

13.3 State Table and Graphs

Figure 13-10

$A B{ }^{X}$	0	1
00	0	1
01	1	1
11	1	0
10	0	1

13.3 State Table and Graphs

Table 13-3 Mealy State Tables for Figure 13-7

	$\boldsymbol{A}^{+} B^{+} B^{+}$		Z	
$A B$	$X=0$	$X=1$	$X=0$	1
00	00	01	0	1
01	01	11	1	0
11	11	00	0	1
10	10	01	1	1

Present State	Next state		Present Output(z)	
	$X=0$	$X=1$	$X=0 \quad X=1$	
S_{0}	S_{0}	S_{1}	0	1
S_{1}	S_{1}	S_{2}	1	0
S_{2}	S_{2}	S_{0}	0	1
S_{3}	S_{3}	S_{1}	0	1

13.3 State Table and Graphs

Figure 13-11: Mealy State Graph for Figure 13-7

13.3 State Table and Graphs

Figure 13-12: Serial Adder

(a) With D flip-flop

x_{i}	y_{i}	c_{i}	c_{i+1}	s_{i}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

(b) Truth table

13.3 State Table and Graphs

Figure 13-13: Timing Diagram for Serial Adder

13.3 State Table and Graphs

Figure 13-14: State Graph for Serial Adder

13.3 State Table and Graphs

Table 13-4 A Stable with Multiple Inputs and Outputs

13.3 State Table and Graphs

Figure 13-15: State Graph for Table 13-4

13.3 State Table and Graphs

Construction and interpretation of Timing Chart

1. When constructing timing charts, note that a state change can only occur after the rising (or falling) edge of the clock, depending on the type of flip-flop used.
2. The input will normally be stable immediately before and after the active clock edge. 3. For a Moore circuit, the output can change only when the state changes, but for a Mealy circuit, the output can change when the input changes as well as when the state changes. A false may occur between the state changes and the time the input is changed to its new value. (In other words, if the state has changed to its next value, but the old input is still present, the output may be temporally incorrect.)
3. False outputs are difficult to determine from the state graph, so use either signal tracing through the circuit or use the state table when constructing timing charts for Mealy circuit.
4. When using a Mealy state table for constructing timing charts, the procedure is as follows:
a) for the first input, read the present output and plot it.
b) Read the next state and plot it (following the active edge of the clock pulse).
c) Go to the row in the table which corresponds to the next state and read the output under the old input column and plot it
d) Change to the next input and repeat step (a) (b) and (c).
5. For Mealy circuits, the best time to read the output is just before the active edge of the clock, because the output should always be correct at that time.

13.3 State Table and Graphs

Figure 13-16

Read X and Z in shaded area
(before rising edge of clock).

13.4 General Models for Sequential Circuit

Figure 13-17: General Model for Mealy Circuit Using ClockedD Flip-Flops

13.4 General Models for Sequential Circuit

The combinational subcircuit realizes the n output functions and the k next-state function, which serve as inputs to the D flip-flop.

$$
\left.\begin{array}{rl}
Z_{1} & =f_{1}\left(X_{1}, X_{2} \ldots X_{m}, Q_{1}, Q_{2}, \ldots . Q_{k}\right) \\
Z_{2} & =f_{2}\left(X_{1}, X_{2} \ldots X_{m}, Q_{1}, Q_{2}, \ldots . Q_{k}\right) \\
\vdots \\
Z_{n} & =f_{n}\left(X_{1}, X_{2}, \ldots X_{m}, Q_{1}, Q_{2}, \ldots Q_{k}\right)
\end{array}\right\} \text { n output functions }
$$

13.4 General Models for Sequential Circuit

Figure 13-18: Minimum Clock Period for a Sequential Circuit

Minimum clock period ($t_{\text {clk }}$)

$$
\begin{aligned}
& t_{c l k}(\min)=t_{p}+t_{c}+t_{s u} \\
& t_{c l k}(\min)=t_{x}+t_{c}+t_{s u}
\end{aligned}
$$

13.4 General Models for Sequential Circuit

Figure 13-19: General Model for Moore Circuit Using Clocked D Flip-Flops

13.4 General Models for Sequential Circuit

Table 13-5 State Table with Multiple inputs and Outputs

Present State	Next state $x=0 \quad 1 \quad 2 \quad 3$	$\begin{aligned} & \text { Present } \\ & \text { Output(z) } \\ & X=\begin{array}{llll} 0 & 1 & 2 & 3 \\ \hline \end{array} \end{aligned}$
$\begin{aligned} & S_{0} \\ & S_{1} \\ & S_{2} \\ & S_{3} \end{aligned}$	$\begin{array}{llll} S_{3} & S_{2} & S_{1} & S_{0} \\ S_{0} & S_{1} & S_{2} & S_{3} \\ S_{3} & S_{0} & S_{1} & S_{1} \\ S_{2} & S_{2} & S_{1} & S_{0} \end{array}$	$\begin{array}{llll} 0 & 2 & 3 & 1 \\ 2 & 2 & 3 & 3 \\ 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 \end{array}$
$S^{+}=\delta(S, X)$		
$Z=\lambda(S, X)$		
$\begin{array}{ll} \delta\left(S_{0}, 1\right)=S_{2} & \delta\left(S_{2}, 3\right)=S_{1} \\ \lambda\left(S_{0}, 1\right)=2 & \lambda\left(S_{2}, 3\right)=1 \end{array}$		

